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This paper describes supersonic flows of a gas-particle mixture around a sphere. The 
Euler equations for a gas-phase interacting with a particle one are solved by using 
a TVD (Total Variation Diminishing) scheme developed by Chakravarthy & Osher, 
and the particle phase is solved by applying a discrete particle-cloud model. First, 
steady two-phase flows with a finite loading ratio are simulated. By comparing in 
detail the dusty results with the dust-free ones, the effects of the presence of particles 
on the flow field in the shock layer are clarified. Also an attempt to correlate the 
particle behaviours is made with universal parameters such as the Stokes number 
and the particle loading ratio. Next, non-steady two-phase flows are treated. 
Impingement of a large particle-cloud on a shock layer of a dust-free gas in front of 
a sphere is numerically simulated. The effect of particles rebounded from the sphere 
is taken into account. It is shown that a temporal reverse flow region of the gas is 
induced near the body axis in the shock layer, which is responsible for the appearance 
of the gas flow region where the pressure gradient becomes negative along the body 
surface. These phenomena are consistent with the previous experimental obser- 
vations. It will be shown that the present results support a flow model for the 
particle-induced flow field postulated in connection with ‘heating augmentation ’ 
found in the heat transfer measurement in hypersonic particle erosion environments. 
The particle behaviour in such flows is so complicated that it is almost impossible to 
treat the particle phase as an ordinary continuum medium. 

1. Introduction 
Supersonic two-phase flow over blunt bodies is a very complex engineering and 

theoretical problem. In reality, it is much more difficult to solve the equations of flow 
of two-phase media than to solve the equations of ordinary gasdynamics. In this 
paper we present certain numerical solutions to the problem of a supersonic flow of 
gas conveying solid particles around a sphere. It is assumed that the particle-phase 
is dilute and the volume fraction of the particles is negligibly small (Ishii, Umeda & 
Yuhi 1989). 

There have been many studies treating gas-particle flows over blunt bodies. Some 
important general features of the particle-phase flow in a subsonic or incompressible 
carrier gas around bodies have previously been made clear. A general discussion on 
the particle behaviour in a flow field of carrier gas was given in detail by Robinson 
(1956). A t  least in cases of negligibly small mass loading ratio of the particles, there 
can be a tendency for particles to pile up as they move along streamlines in a 
potential gas flow. In a conserved system, the fact that the particle density increases 
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along particle streamlines must be compensated for by the creation of dust-free 
regions. For example, Michael (1968) and Fengndez de la Mora & Rosner (1982) 
showed that a sphere can concentrate a large amount of dust along the limiting 
particle streamlines which divide the dusty and dust-free regions for particles whose 
sizes are near the critical one for impaction onset. The possibility of aerodynamic 
focusing of particles in a carrier gas was investigated by FernAndez de la Mora & 
Riesco-Chueca (1988) in detail. 

When the flow field of a carrier gas is rotational, the situation becomes much more 
complicated. As was discussed by Fernrindez de la Mora & Riesco-Chueca (1988), the 
vorticity of the carrier gas has a tendency for the particles to disperse as they move 
along streamlines. Chung & Troutt (1988) have simulated the behaviour of particle 
dispersion in an axisymmetric jet, where the large organized structures (vortices) of 
the carrier gas have played a decisive role in the strong particle dispersion. Under 
some conditions, particles are flung outside the fluid mixing region of the jet. 

In these studies, it is interesting that both the particle focusing in a gas flow 
around a body and the optimal dispersion of particles in the turbulent mixing layer 
of a free jet have been correlated successfully with the universal parameter called 
Stokes number Y. This is the product of the relaxation time of the particles and a 
characteristic value of the velocity gradient in the suspending gas. 

In general, theoretically and practically, both particle focusing and particle 
dispersion, which are obviously antipodal to each other in their physical features, 
should be expected to occur simultaneously in a carrier gas flow. When the mass 
loading ratio v is not negligible but finite, these two opposite tendencies of particles 
will introduce serious difficulties into the theoretical approach. Disintegration of a 
large particle cloud into small subclouds may happen in some flow regions and also 
coalescence or intersection of small subclouds may occur in different flow regions. In 
such situations, it  will be almost impossible to treat the particle phase as an ordinary 
continuum medium. 

For sufficiently dilute particles, aside from particle-particle collisions, their 
motions are random only because of Brownian motion in a gas, for which the 
particles are in general too large and heavy, or because of random initial conditions, 
which would be damped in the early stage of the flow history. Since the gas-particle 
interactions can effectively suppress the velocity difference among the particles in 
each local flow region, the possibility of the inter-particle collisions will also be 
negligibly small unless there are strong fluctuations of the gas flow or there are some 
fluctuating external forces on the particles. Therefore, in many cases, we may expect 
the velocity, temperature and density of the particle cloud to vary over a lengthscale 
of the same order as that of the gas. Because of the absence of randomness in local 
particle motion, ' the particle pressure ' does not appear in the governing equations. 
Under such a circumstance, the so-called 'two-fluid model' is simplified to a 
significant degree (Marble 1970). 

Generally and strictly speaking, for ordinary suspensions, the velocity, tem- 
perature and density of the gas and particles are some statistical properties or some 
mean (ensemble average or space average) values (Batchelor 1988). Therefore, for 
instance, the particle velocity is composed of a mean velocity V, and a fluctuation 
A 5  about that mean with statistical properties such as (Av",), where the angle 
bracket denotes the mean value. (Here for simplicity, one-dimensional flow is 
considered.) The random velocity fluctuations might arise from variations in the 
configuration of particles and resulting hydrodynamic interactions, or, from 
turbulence in the case of high-Reynolds-number flow even under the condition where 
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the Brownian motion can be neglected. In  the present paper, it  will be implicitly 
assumed that the (A%); is negligibly small compared with V,. As pointed out by 
Batchelor (1989), the tractability of the equations for (laminar) dusty-gas flow is just 
a consequence of the absence of fluctuations in the particle velocity. 

We should like to stress that even in the simplified two-fluid model, the particle 
phase as well as the gas one can be treated as a continuum medium. There are, 
however, problems in which the distortion of the particle flow field due to solid walls 
or due to strong gas flow fluctuations is the central physical issue. For example, when 
the particles are reflected from the body surface, the reflected particles must be 
treated as still another component of the mixture, as far as the ordinary continuum 
model is applied. (If one treats such a flow with a continuum model, the evaluation 
of mean quantities such as the particle velocity and temperature will become very 
complicated and also the fluctuations about the means cannot be neglected.) The 
solution to the problem of flow of a three-phase mixture will be very complex 
(Matveyef & Seyukova 1981). For a gas-particle flow where the disintegration 
of particle clouds and/or coalescence or intersection of particle clouds occur, we 
must treat the flow as a multi-phase flow. Such a flow will be very difficult to 
solve. 

In view of this, Ishii et aE. (1989) proposed a discrete particle-cloud model for the 
particle phase. In  this model, a whole particle cloud is divided into a large number of 
small subclouds. In each cloud, the particles have approximately the same velocity 
and temperature. The particle flow field is obtained by following these individual 
clouds separately in the whole flow domain. This model can be applied successfully 
to the problems where multivalue regions for the particle phase appear in the flow 
field. 

In  the present paper, steady supersonic flows of gas-particle mixtures over a 
sphere are solved. First the particle behaviour in ft rotational gas flow for Y + 0 is 
investigated in detail. Emphasis is placed on the particle impaction and the particle 
focusing. Next the steady supersonic two-phase flows are solved for a finite loading 
ratio. By comparing the dust-free and dusty results, effects of the presence of 
particles on the shock layer and also those of the particle mass loading ratio on the 
particle impaction are discussed. 

Finally, unsteady flows produced by the impinging of a large particle cloud on a 
shock layer formed in front of a sphere are simulated. Unsteady shock distortion 
induced by the particles reflected from the body surface is investigated. By 
comparing the results so obtained with the previous experiments, it will be shown 
that the numerical results strongly support a flow model for the particle-induced flow 
field postulated in connection with ‘heating augmentation ’ observed in the heat 
transfer measurements in hypersonic particle erosion environments (Dunber, 
Courtney & McMillen 1975; Fleener & Watson 1973). 

All the numerical calculations were performed on the super computer Fujitsu VP- 
400 in the Data Processing Center of Kyoto University. 

2. Basic equations 

introduced as follows, 
Following the previous paper (Ishii et al. 1989), non-dimensional quantities are 
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and 

where t ,  x, y are the time, axial distance and radial distance, respectively; p ,  u, u ,  p ,  
T and c are the density, the axial velocity, radial velocity, pressure, temperature and 
speed of sound of the gas, respectively. E is a reference length of the flow field and 
here the sphere radius is taken as z. The subscripts p and co denote particles and 
uniform flow conditions, respectively, and overbars denote the dimensional 
quantities. The location of a particle at  a time t is denoted by (5, y p ) .  Cv, and cpg are 
the specific heats at  constant volume and pressure of the gas, C,, is the specific heat 
of the particle material, y is the ratio of specific heats of the gas, C, is the particle 
drag coefficient, Nu is the Nusselt number and pmp is the material density of the 
particles. The subscript S denotes the Stokes flow regime. 

is defined as a ratio of the aerodynamic 
response time of a particle assuming the Stokes drag law, FA, to a characteristic time 
of the flow field, TF. These are expressed as 

The non-dimensional parameter 

Here p is the gas viscosity given by 

where S is an appropriate constant. The parameters fp and gP are the modifying 
factors of the drag coefficient and the Nusselt number, respectively. C, and Nu used 
in the present study are those given by Henderson (1976) and Carlson & Hoglund 
(1973), respectively. 

By applying the discrete particle-cloud model and introducing suitable assump- 
tions, the basic equations for the present axisymmetric system are given in terms of 
these non-dimensional quantities in the following sections. 

2.1. Particle phase 
By labelling the particles by subscripts i (i = 1,2,3,  . . .) and denoting their locations 
by (xpi(t), ypa(t)) ,  the particle motion obeying Newton’s law is described by 

dU 
2 = Ipt ,  

dt (7) 
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where up = 

The parameters A, and B,  are defined by 
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where Pr is the Prandtl number of the gas. 

2.2. Gas phase 
The governing equations for the gas-phase are written in the cylindrical coordinate 
system as 

aU i3F aG 
-+-+-+H+H, = 0 ,  
at ax ay 

where 
PU 

PU2 + PIY 

u(e + P / Y )  
U =[ i], F =[ PU" 

P" 

, G = [  PV2 puv + PIY 1, 
v(e + P / Y )  

where y;k and qk are the radial coordinate of a particle located at  the centre of a k- 
cloud injected into the flow field and the number of particles contained per unit 
length of the cloud, and S, is a suitable averaging domain. The above system is 
supplemented by 

(12) e = -  +$(U2+"2),  

Y(Y - 1) 

P = pT,  
c2 = T .  
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3. Numerical procedure 

transformed into a computational one ( 6 , ~ )  by 
For an effective solution of the gas-phase flow, the physical space (z,y) is 

herewith, the governing equation (10) is rewritten as 

a7 aP at? -+-+-+a+fip = 0, 
at a6 a7 

where 

Here J is a Jacobian of the transformation defined as 

The physical domain considered here and the transformed computational one are 
shown in figure 1. The calculation domain is the region surrounded by the axis AB, 
the outer boundary BC, the downstream boundary CD and the sphere surface DA. 
The number of the mesh is 100 x 100 and that of the subclouds of particles is 
1000 x 300 for the two-phase solutions. 

In the present calculations, the gas-phase flow is solved in the computational space 
(6,  7) and the particle-phase is solved directly in the physical space (2, y). Of course, 
it is quite possible to formulate the basic equations in the spherical coordinate system 
( 6 , ~ )  from the beginning, and also the present calculation can be performed in this 
coordinate system for both the gas and the particle phases. 

From the numerical point of view, however, the spherical coordinate system has 
not enough flexibility for the flow geometry to be treated and so is not convenient 
for general use. The numerical scheme used here is, therefore, first constructed in the 
cylindrical coordinate system (2, y) and then is transformed into that in the spherical 
coordinate system described above. For the particle phase, there is no difficulty in 
solving the system in the (z,y)-space and also the governing equations are much 
simpler in the (x, y)-space than in the (t, 7)-space. 

The numerical procedure is essentially the same as that in the previous paper (Ishii 
et al. 1989). First the time interval At is determined by the CFL (Coulant- 
Friedrichs-Lewy) condition for the gas-phase flow (Godunov 1959) and this At is 
also used in the particle-phase solution. Although it is not always accepted that such 
a treatment is justified, it was confirmed that in these calculations At determined by 
the CFL condition was always much smaller than the particle relaxation times t,, 
and t,, for the present flow conditions. In a few cases, it was also found that the 
numerical results for a flow were not appreciably changed by adopting different time 
intervals such as At and ;At, where At is a standard time interval employed here. 
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FIQURE 1. Calculation domain. The domain ABCDA in the (z, y)-plane is transformed into a 
rectangular domain ABCDA in the (6 ,  T)-plane. 

The boundary conditions applied here are as follows: the symmetry condition is 
applied on the boundaries AB and D A ,  the uniform flow condition on the outer 
boundary BC and the outflow condition on CD (Matsuda et al. 1987). 

As the initial flow condition, a uniform gas at  rest at  p = 1 and p = 1 is assumed 
to occupy the whole computational domain and a rigid sphere is placed in it. At  t = 
0, a uniform supersonic flow begins to enter the computational domain through the 
boundary BC. Since a time-dependent technique is applied, the steady flow is 
obtained as a time-converged solution. The time-converged one-phase solution is 
employed for the calculations of two-phase flows with a finite loading ratio as an 
initial flow condition. 

4. Numerical results 
The Euler solver used in the present study is the TVD-scheme developed by 

Chacravarthy & Osher (1985), which can be third-order accurate in space and second- 
order accurate in time. The number density of particle clouds considered here is 
about 1.5 times larger than that in the previous case (Ishii et al. 1989). The CFL 
number was taken to be 0.5 for all the calculations. 

The physical constants for the gas as well as the particles used here are listed in 
table 1. 

4.1. Preliminary check of numerical scheme 
Although the purpose of this paper is to investigate two-phase flows, it will be worth 
giving a brief description of dust-free (one-phase) solutions. This is also necessary for 
a preliminary check of the validity and reliability of the present numerical scheme. 

The solutions for various Mach numbers M ,  have demonstrated a satisfactory 
time-convergence of the flow field. The profiles of the pressure distribution along the 
sphere surface were compared with the theoretical results given by Belotserkovskii 
(1960), which have been proved to agree well with the experiments, and the pressures 
and densities just behind the bow shock and at  the stagnation point on the body axis 
were compared with the exact values. In these comparisons, excellent agreement was 
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FIGURE 2. Comparison between particle streamlines in a supersonic gas flow for different particle 
drag coefficients, Mm = 3, p, = 0.1 atm, Tm = 290 K, = 3 cm, i;, = 1 Fm, Yr = 4.4; -, 
Henderson ; ---, Gilbert et al. 

X 

Gas (air) Particles (A1,0,) 

c,, = 1005 J/kg K 
y =  1.4 

p = 1.79 x 
6 = 0.5 

P, = 0.75 

emp = 4.0 x lo3 kg/m3 
C,, = 1686 J/kg K 

kg/m s (for T = 288 K) 

TABLE 1. Physical constants of gas and particles 

obtained. It was also confirmed that the shock stand-off distances agree very well 
with the previous experiments and theories (Van Dyke 1958). 

4.2. Particle trajectories in a carrier gas 
In various industrial fields, it is often crucially important to know the particle 
trajectories in a carrier gas. In  this section, the motion of particles in the gas flow 
obtained in the previous section is investigated in detail. Since the presence of 
particles does not affect the gas-phase flow in the limit where v+O, the particle 
motion can be determined for a fixed flow field of the gas. The particles are injected 
into the flow field at various locations on a plane perpendicular to the body axis 
ahead of the bow shock. It is assumed that the particles have the same velocities and 
temperatures as those of the gas a t  the injection points. 

Figure 2 shows the particle streamlines for Fp = 1 pm. In order to confirm the 
generality of the present results, the particle streamlines were calculated by using 
two different particle drag coefficients C ,  ; one of which is given by Henderson (1976) 
and the other by Gilbert, Davis & Altman (1955). The former takes account of 
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rarefaction, inertial and compressibility effects and also that of a temperature 
difference between the particle and the gas. The latter includes the inertial effect 
only. Here, it is assumed that the particles which impinge on the body surface are 
reflected perfectly elastically. The reflection of particles from the sphere makes the 
residence time of the particles in a shock layer very long, which is helpful for 
detecting the difference between the two cases. Obviously, the particle streamlines 
for these drag coefficients are slightly different from each other for particles 
impinging on the sphere. They deviate appreciably only in the flow region near the 
downstream boundary, where the rarefaction effect may become important for the 
drag coefficient. From this, one may conclude that the present numerical results do 
not depend on the particle drag coefficient, at  least for the particle streamlines in the 
shock layer in front of the sphere. In what follows, all the calculations are carried out 
by using C, given by Henderson (1976). 

It is generally and reasonably expected that the particle behaviour in a gas flow 
can be characterized by the Stokes number Y defined as 

where 5 and 0 are an appropriate characteristic length and a reference velocity of the 
gas flow, respectively. Recently, Forney & McGregor (1987) have proposed a 
modified Stokes number by suitable choice of 5 and 0 as 

where Re, is the particle Reynolds number given by 

(21) 
Here Aa, is the particle velocity relative to the gas, and djC is the collection factor 
due to departure from the continuum flow of the gas around a particle. Equation (20) 
has been derived by an adaptation of the formula of Israel & Rosner (1983) to the 
case of supersonic flows. In the evaluation of Yr from (20), the term TITp in C, is 
fixed at unity. The shock stand-off distance d i s  taken as the reference length of the 
flow field. 

Figure 3 shows the particle and the gas streamlines for M ,  = 3, p, = 0.5 atm, 
T, = 290 K, L = 3 cm and F~ = 0.5 pm (Yr = 0.925). The dotted lines are gas 
streamlines while solid lines are particle ones. In this figure, strong particle 
concentration is observed in the region near the grazing point of the particles. But 
in this case, it was confirmed that the particle focusing (crossing of particle 
trajectories) is not realized at  least within the numerical accuracy. 

Although we treat the particle phase partly as a discrete one in the present 
numerical analysis, at  least for theoretical discussion it is sometimes very helpful to 
consider an analogy between the ideal gas and the particle phase. For example, 
Morioka & Nakajima (1987) proposed a flow model for the particle phase, where the 
particles are taken to be large and heavy molecules and a linearized Boltzmann 
equation is applied to them. By using a Chapman-Enskog expansion technique, they 
derived conservation equations for the particle phase. It must be noticed that in their 
model the usual ‘particle temperature Tp’ is treated as an internal energy and then 
it is not related to the random motion of the particles, and also the interactions 
between the gas and the particle phases are taken into account by introducing some 
external force and energy source terms corresponding to the interactions. 

Re , = 2 ~ ,  j i A t ~ ~ / , i l .  
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FIGURE 3. Gas and particle streamlines, M ,  = 3, p ,  = 0.5 atm, T, = 290 K, L = 3 cm, F~ = 
0.5 pm, !Pr = 0.925; ---, gas; -, particles. 
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According to this theory, ‘the speed of sound’ in the particle phase cp may be 

(22) 
defined by 

cp = const x Qtr, 
owing to the analogy with the kinetic theory, where Tptr is a ‘particle translational 
temperature’ (Tptr =+ Tp). Under the condition that the velocity fluctuation of the 
particles is negligible, it follows that 

where V, and M p  are the velocity and the Mach number of the particle phase, 
respectively. 

It is important to realize that the fluctuation of the particle velocity in this theory 
does not directly relate to the random motion of the gas molecules. Actually in a 
gas-particle mixture, gas molecules are always colliding a t  random with particles 
and then even the heavy particles will have some random motion owing to the 
randomness of the thermal velocity of the gas molecules. Since, however, the ratio of 
the mass of a gas molecule to that of a particle is negligibly small, such a random 
motion of the particles can be neglected without loss of reasonableness and generality 
in the fluid dynamics and thermodynamics of the gas-particle mixture.? The 
randomness of the particle motion is then essentially different from that of thermal 
motion of the gas molecules in the kinetic theory. In  cases where the direct 
interaction between the particles is negligible, the random motion of the particles can 
be produced only through interactions with the local fluctuations of the gas phase 
flow, which are not microscopic but just macroscopic in the gasdynamic sense. One 
cannot get any information on the random motion of the particles from the thermal 
motion of the molecules. 

t The particles in the dusty-gas theory should have some bulk properties such as the material 
density and specific heat and the surface tension. For example, it is said that a t  least one thousand 
H,O molecules are necessary for a small droplet of water to possess its normal surface-tension 
value. 
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FIGURE 4. Collection factors E,  against the modified Stokes number Y,,. 0 ,  results for v, > 0, 
M m = 3, p, = 0.5 atm, Tm = 290 K, L = 3 cm; 0, results for Y, + O .  ---, curve which fits to the 
numerical results for v, + 0. 

The present definition of the 'sound velocity of the particle phase' and then that 
of the 'particle translational temperature ' might not be physically appropriate when 
the inter-particle collision is negligible. In this sense, as was discussed previously, 
(23) should be replaced by 

,/ -0 -9 I 
- ( f ,  pm, 4 = (2 ,  5 )  P 
- /%, 1) 

- p ( ~ 0 . 3 )  

T I  (AV",>i+O, M p  - V 

In  gasdynamics, one of the most important features of subsonic motion is 
incompressibility, which results from the fact that the molecular motion is fast 
compared with the mean convective speed. Following this, it  will be possible to 
consider M p  in (24) as a kind of 'Mach number of the dilute particle phase '. (It has 
to be pointed out that there are some differences between the two-component gas 
mixture and the two-phase mixture (Lhuillier 1986).) 

Thus, the particles can be highly supersonic with respect to their own fluctuation 
motion, that is, highly compressible (FernBndez de la Mora & Riesco-Chueca 1988). 
Hence the particle-free region as well as the particle concentration can easily be 
realized in a flow region. In  many practical cases, the particle phase flow actually 
presents such behaviours. Clearly, main features of the present results are quit,e 
consistent with these discussions. For example, as shown in figures 11-13, dust-free 
regions appear and the strong particle concentration is realized near the limiting 
particle streamlines. 

It has been found that the particle concentration is an important feature of the 
particulate flow especially when the carrier gas is irrotational. On the contrary, 
however, rotational flows disfavour the particle focusing. Since the gas flow field in 
the shock layer is rotational, the vorticity in the gas flow field will be against the 
particle concentration. A typical example of the particle concentration was observed 
in figure 13. At least for the flow and the particle conditions considered here, it was 
numerically confirmed that the particle focusing (crossing of particle trajectories) is 
not realized for any value of Yr. 

In  practice, much attention has been paid to finding the collection efficiency E,, 
which is defined as the ratio of the number of particles impacting with the object to 
the number of particles which would impinge on it, if they followed straight-line 
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FIQURE 5. Contours of constant pressure, density and temperature, M ,  = 3, p, = 0.5 atm, T, = 
290 K,  L = 3 em, n = 2200; (a), ( b ) ,  ( c )  v, = 0.3, Fp = 2 pm, !Pr = 7.21; (d ) ,  (e),  (f) V, = 0.3, Fp = 
1 pm, !Pr = 1.93; (g ) ,  (h) ,  (i) v, = 5.0, Fp = 2 pm, !Pr = 7.94; (j), (k), (2) V, -to. 

trajectories without any deflection by the gas. The present results are plotted against 
the modified Stokes number Y,. in figure 4, where the dashed line simply shows a 
curve fitting to the numerical results for v+O. The present collection factor E, is 
clearly correlated fairly well with this parameter Y,.. 

4.3. Steady two-phaae flows 
In this section, gas-particle two-phase flows with a finite loading ratio are calculated 
and the effects of the presence of particles on the flow field are investigated. These 
will also be compared with the unsteady results in the following chapter. Because of 
limitation of the computer memory, it is assumed that the particles impinging on the 
body surface are absorbed by the surface (perfectly inelastic collision). 

Denoting the height of the plane by R, which is located upstream from the bow 
shock and at which the particles are injected, the axial and radial widths of the k- 
particle cloud Ax;k and AyZk, respectively, are given by 

where K is the number of particle clouds injected into the flow field at each timestep. 
Here, R and K are set to 1.25 and 300, respectively. Since Ju*l At and RIK are much 
smaller than the mesh sizes Ax and Ay, the condition that Axpk Aypk -g X,( = AxAy) 
is satisfied. 
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FIQURE 6. Temperature distributions of gas and particles along the body axis, M ,  = 3, p ,  = 
0.5 atm, Tm = 290 K, = 3 cm, n = 2200; a. F~ = 2 pm, v, = 5, Yr = 7.94, b .  sP = 1 pm, v,  = 0.3, 
Y 'r=1 .93;c .~p=2pm,v ,=0 .3 ,  Yr=7 ,2 l ;d .v ,+0 .  

The steady dust-free result obtained in $4.1 was used as the initial-flow condition. 
It took more than 1500 timesteps to get a time-converged solution after the injection 
of particle clouds into the flow field. Here only the time-converged solutions (n = 
2200) will be presented. 

Contours of constant pressure, density and Mach number are shown in figure 5 for 
dusty flows. It can be seen from them that the main features of the dusty results are 
essentially the same as those presented in the previous paper (Ishii et al. 1989), that 
is the constant Mach number contours of the dusty gas are rather close to those of 
the dust-free one, while the contours of constant pressure and density are 
considerably different from the dust-free case (see figures 5g-5i). The shock 
stand-off distance for the two-phase flow is appreciably decreased. This trend 
becomes stronger with larger loading ratio and smaller particle radius (or smaller 
modified Stokes number Yr). 

For closer investi ation of the two-phase shock layer, axial distributions of the 
temperature, velocity, density and pressure of the gas and the temperature and 
velocity of the particles are shown in figures 6-9. At first glance, it may be seen that 
the structure of the dusty shock layer is strongly dependent on the Stokes number 
Yr and the particle loading ratio v,. The most important effect of these parameters 
is seen in the temperature distributions of the gas (figure 6). 

When the gas passes through the bow shock, its velocity decreases discontinuously 
in magnitude. On the other hand, the change in the particle velocity is continuous 

9 
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FIGURE 7. Velocity distributions of gas and particles along the body axis, M ,  = 3, = 0.5 atm, 
~ , = 2 9 0 K , ~ = 3 ~ m , n = 2 2 0 0 ; a . ~ ~ = 2 p m , v , = 5 ,  Y 7 = 7 . 9 4 ; b . ~ p = 1 p m , v , = 0 . 3 ,  Yr= 
1.93; c. F~ = 2 pm, v, = 0.3, !Pr = 7.21; d. v,+O. 

across the bow shock because of the large inertia of the particle. The magnitude of 
the particle velocity decreases along the stagnation streamline. As a result, the 
relative velocity between the gas and the particle takes the maximum value just 
behind the bow shock. Thus, the frictional heat is generated most effectively near the 
bow shock. This heat is responsible for the steep increase of the gas temperature in 
the shock layer while this does not occur in the dust-free case. When the Stokes 
number Yr is close to unity, the relative velocity is appreciably decreased, as the 
particle approaches the sphere surface, and therefore the heat transferred from the 
gas to the particles dominates over the heat supply owing to frictional heat- 
production. It follows that the gas temperature becomes highest a t  a certain region 
behind the bow shock and it decreases significantly near the body surface (see the 
curve for Y,. = 1.93 in figure 6). For Y,. 9 1, since the particles are not effectively 
decelerated in the shock layer, the highest temperature is realized at the body surface 
(see the curve for Y,. = 7.21 in figure 6) .  This situation is, however, changeable with 
the loading ratio. In the case of vc0 = 5 ,  although the Stokes number is much larger 
than unity ( !Pr = 7.94), the highest temperature is realized somewhat upstream of 
the body surface. In  this case, the deceleration of the particle velocity is nearly the 
same as that in the above case. However, the gas temperature is significantly 
increased owing to the large frictional heat. And then the temperature difference 
T- Tp, to which the heat transfer from the gas to the particles is nearly proportional, 
becomes very large. Thus, the gas temperature decreases near the body surface for 
large particle loading ratio (see the curve for Y,. = 7.94 in figure 8). 
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FIGURE 8. Density distribution of gas along the body axis, M ,  = 3, p, = 0.5 atm, T, = 290 K, 
L= 3 cm,n = 2 2 0 0 ; a . ~ ~  = 2 pm, v, = 5, Yr = 7.94;b.vP = 1 pm,v, = 0.3, Yr = 1.93;c.vp = 2 pm, 
v, = 0.3, Yr = 7.21 ; d .  V, + O .  

In  figure 7,  velocity distributions of the gas for v, = 0.3, vP = 1 .O pm and v, = 5.0, 
Fp = 2.0 pm show a nonlinear behaviour near the stagnation point. This phenomenon 
corresponds to the structure of each shock layer as shown in figures 6, 8 and 9. In  
these flows, the gas density increases very steeply and the gas temperature becomes 
very high near the stagnation region. These will affect the rate of momentum transfer 
between the gas and the particles in a complicated manner, and will be responsible 
for the nonlinear behaviour of the gas velocity. It has to be stressed, however, that 
the two-phase results are not always completely time-converged even for large 
numbers of the timestep n, owing to the discrete treatment of the particle phase. 
Some artificial fluctuations of the particle behaviour are inevitably produced 
numerically. This phenomenon is most prominent near the stagnation region. The 
gas flow in this region will in turn be fluctuated by the artificial disturbances of the 
particles. Then the detailed quantitative discussions about local derivatives of the 
gas velocity near the stagnation region, where the fluctuation of the gas velocity can 
be the same order with the velocity itself, will not be appropriate. 

Obviously the flow behaviour along the axis behind the bow shock is similar to  
that behind a plane shock wave propagating in a uniform gas-particle mixture (Ishii 
1983). For example, the overshooting of the gas temperature and the nonlinear 
decrease in the gas velocity are found in the latter case, too. The most prominent 
differences between them are realized in the region near the sphere surface. In the 



468 R. Ishii, N .  Hutta, Y .  Umedu and M .  Yuhi 

I I 

I I 
1.1 1.2 1.3 1 .o 

X 

FIQURE 9. Pressure distribution of gas along the body axis, M ,  = 3, p ,  = 0.5 atm,  Tm = 290 K, 
= 3 cm, n = 2200; a. r;, = 2 pm, v, = 5, Yr = 7.94; b. Fp = 1 pm, v, = 0.3, Yr = 1.93; ‘i, = 2 pm, 

v, = 0.3, Yr = 7.21 ; d .  v,+O. 

present cases, as shown in figures 6-9, all the quantities change most significantly 
near the stagnation point owing to the presence of the sphere. 

The shapes of the bow shock are shown in figure 10. This suggests that the bow 
shock is dependent on the particle loading ratio v, as well as the Stokes number Y,. 
It may be natural and reasonable to conclude that the shock stand-off distance for 
the dusty flow is always smaller than that for the dust-free flow. The effect of the 
Stokes number on the bow shock is shown in figure l O ( b ) ,  where the results are for 
fixed gas conditions and a fixed loading ratio. This figure shows that the shock stand- 
off distance is a decreasing function of the Stokes number. 

For more detailed discussions, i t  will be instructive and helpful to consider a 
limiting case of Y, + 0. In this case, we can treat the mixture as a single fluid and can 
introduce two effective parameters 
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FIGURE 10. Bow shock waves, M, = 3, p ,  = 0.5 atm, Tm = 290 K,  L = 3 cm, n = 2200, (a) Effect 
of particle loading ratio v, ; 1 .  F~ = 2 pm, v, = 0.3, Yr = 7.21 ; 2. Tp = 1 pm, v, = 0.3, Yr = 1.93 ; 
3. F~ = 2 pm, v, = 5.0, Yr = 7.94; 4. v,+O, (b) Effect of Stokes number; 1 .  F~ = 0.5 pm, v, = 1.0, 
Yr = 1.01, 2. F~ = 1 pm, v, = 1.0, Yr = 2.64; 3. Fp = 2 pm, v, = 1.0, Yr = 7.47; 4. v-0.  

where ye and ce are the effective ratio of the specific heats and the (equilibrium) sound 
velocity of the mixture. When ye and rem are used in place of y and Em, respectively, 
in the non-dimensional basic equations for the system, the equations become the 
same as those for an ordinary single (gas)-phase flow. For the single-phase flow, the 
shock stand-off distance A is a function ofM and y. When the ratio of specific heats 
y is fixed, A decreases with increasing M ,  and becomes insensitive to M for M $ 1. It 
is well known that 

A K ( y - l ) / ( y +  1) forM 9 1. (27 ) 

When the gas condition is fixed, then the shock stand-off distance A is a decreasing 
function of the particle loading ratio v,, because ye and C, are decreasing with 
increasing v,. This leads to the conclusion that the shock stand-off distance is a 
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FIQURE 11. Locations of small particle clouds, M ,  = 3, pm = 0.5 atm, T, = 290 K, = 3 em, 
F~ = 1 pm, v, = 0.3, Yr = 1.93, n = 2200. 

decreasing function of v. Since ye+ 1 as v +  GO, then the shock stand-off distance is 
always very sensitive to v for any Mach number Me (=  a,/re) at  least in the 
equilibrium limit ( Yr + 0). 

In order to investigate the particle behaviours in the shock layer, the spatial 
distributions of the small particle subclouds are shown in figures 11 and 12, where the 
number density of the subclouds considered in the actual calculations is reduced to 
one eighth. The particle trajectories in a dusty flow for a small Stokes number, which 
is slightly above the critical value, is shown in figure 13, where only a small number 
of trajectories are plotted to avoid confusion. Obviously, the grazing point is 
appreciably shifted in the upstream direction along the sphere surface. The 
concentration of the particle trajectories near this point is very strong, which is very 
similar to the theoretical prediction of Michael (1968) for the particle behaviour in an 
irrotational carrier gas around a sphere. Although a particle concentration is realized 
near the limiting particle streamline, especially in figure 13, it can be confirmed that 
there is no particle focusing. This situation is not dependent on the particle loading 
ratio v. We may conclude that the intersection of particle streamlines does not occur 
in the supersonic two-phase flows around a sphere. The wavy pattern of particle 
trajectories near the body surface in figure 11 arises from the artificial disturbances 
included in the numerical solution. 

Although. as was discussed previously, the structure of the dusty shock layer is 
strongly dependent on the particle loading ratio v,, the particle trajectories are well 
correlated with the Stokes number Yr. The collection factors E,  for the dusty flows 
obtained here are plotted against Y, in figure 4 by solid circles. It is remarkable that 
these collection factors E, are close to the correlation curve for v,+O. With the 
increasing loading ratio v,, the collection factor E, is increased. This will mean that 
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FIGURE 12. Locations of small particle clouds, M ,  = 3, p, = 0.5 atm, T, = 290 K, = 3 cm, 
Fp = 2.0 pm, v, = 5.0, Yr = 7.94, n = 2200. 
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FIQURE 13. Particle streamlines for a small Stokes number, M ,  = 3, pm = 0.5 atm, Ib, = 290 K, 
E = 3 cm, vP = 0.5 pm, v, = 1.0, Yr = 1.01. 
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FIGURE 14. Comparison of dust- and spike-induced flow fields. 

both E,  and ‘i$ are increased roughly with the same rate by increasing the loading 
ratio v,. In other words, the ratio EP/  does not depend much on the loading ratio 
vm- 

So far very little has been known on the effects of the mass loading ratio v, on 
particle inertial effects. Recently, Park & Rosner (1989) have reported combined 
inertial and thermophoretic effects on the collection factor E,  in highly loaded dusty- 
gas sytems, where it is assumed that the fluid flow is incompressible and the 
Reynolds number is very small. However, because of the significant difference of the 
flow conditions, direct comparison of the present results with their results will be not 
appropriate. 

4.4. Tinsteady two-phase flows 
In the early 1970s, a, series of experimental tests was carried out to evaluate the 
performance of some metals (titanium, stainless steel, etc.) in an erosive hypersonic 
environment (Dunber et al. 1975; Fleener & Watson 1973). Measurements of heat 
transfer rates in these environments indicated heating levels far in excess of clean air 
values. These results were believed to be related to rebounded particles and surface 
debris interaction with the shock layer. In  the high-speed motion pictures, rebounded 
dust particles were seen to produce intermittent conical perturbations of the bow 
shock. It has been postulated that the observed dust-induced flow structure is similar 
to that associated with spiked bodies. A comparison between the observed flow 
geometries for a spiked hemisphere and for a dust environment is made in figure 14. 
The flow field for a spiked body is characterized by separation of the spike boundary 
layer which results in a conical shock shape. In  the dust case, it has been 
hypothesized that the wakes of rebounding particles provide a path for upstream 
communication of the shock-layer pressure, producing a conical separated region and 
the observed conical shock. 
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FIGURE 15. Particle cloud. At first, particles are present in a shaded disk region ahead of the bow 
shock, which has a thickness a = 0.3 and a radius b = 0.2, and this cloud is divided into 300 x 200 
subclouds. 

Here, unsteady flows over a sphere in a dust environment are simulated and the 
role played by the rebounded particles in the shock distortion is investigated. In the 
previous steady solutions, a case was treated where incident particles on the sphere 
are absorbed by the surface (perfectly inelastic reflection). When we try to calculate 
a steady-state dusty solution under the condition that the impinged particles are 
reflected elastically from the body surface, both the incident and reflected particles 
must simultaneously be traced in the flow field until a time-converged flow field is 
obtained. Since the rebounded particles remain in the flow field for a very long time, 
this requires a very large computer memory, far in excess of the capacity of our 
computer, and also requires a large amount of computing time. For these reasons the 
steady dusty flow in the elastic reflection case could not be treated in $4.3. 

In  the present unsteady calculations, there is no difficulty with the limited 
capacity of the computer resources. We consider two extreme cases: one is the case 
where the particles impinging on the sphere are reflected perfectly elastically 
(specular reflection) and the other is the case where they are reflected perfectly 
inelastically. By comparing these two results, it will be concluded that the rebounded 
particles play an important role in the distortion of the flow field when a large 
particle cloud impinges on a shock layer. 

A steady supersonic flow at Mach number M ,  = 3 of a dust-free gas around a 
sphere is given as the initial flow condition. As shown in figure 15, initially the 
particles ape located only in the shaded rectangular region (a particle cloud) ahead 
of the bow shock. They are assumed to  have the same local velocities and 
temperatures as those of the gas. The loading ratio of particles v, is set to 5.0. The 
axial and radial widths of the incident particle cloud are 0.3 and 0.2, respectively. 
This cloud is divided into 300 x 200 small subclouds. 

First, we present the results obtained on the assumption of perfectly elastic 
reflection of the impinged particles on the sphere. The flow field of the gas and the 
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FIQURE 16. For caption see page 476. 

configuration of the particle cloud are shown in figure 16 at every 100 timesteps for 
n < 700 and at every 300 timesteps for n 2 900. It should be noted that each time 
interval At = tn+l - tn, where n is the integration timestep, is determined by the CFL 
(CoulantcFriedrichs-Lewy) condition for the gas-phase flow at t = t n .  Therefore it is 
not constant but dependent on the temporal gas condition (say a function of time t) .  
Fortunately, however, in the present calculation, it was confirmed that the relation 
between the time t and the timestep n is regarded as nearly linear and An = 100 
corresponds to At ( = AF//7,) x 0.1. 

As the particles enter the shock layer, they push the gas towards the sphere and 
then the pressure waves are produced in front of the left-hand side of the particle 
cloud. These pressure waves reach the sphere at  t w 0.07 and thereafter the particles 
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FIQURE 16. For caption see next page. 

reach the sphere at t x 0.1, at which the highest density and pressure of the gas are 
attained at the stagnation point. By t % 0.2, all the particles complete their reflection 
from the sphere surface and the particles first impinged on and reflected from the 
surface reach the bow shock at  t M 0.2. During this period, the shock stand-off 
distance continues to decrease and it attains the smallest value at t x 0.2. 

On arriving at the bow shock, the reflected particle cloud pulls the gas and thereby 
the bow shock moves towards the upstream direction. After the reflection of the 
particle cloud, the gas near the stagnation point begins to expand rapidly like an 
‘explosion ’. At t M 0.2, the gas velocity in this region becomes positive and a vortical 
structure (a ring vortex) is produced, which is convected downstream rather slowly 
along the body surface with time (see figure 18). In accordance with the vortex 
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FIGURE 16. Flow field in front of the sphere for perfectly elastic reflection : (a)  contours of 
constant pressure ; (a) contours of constant density ; ( e )  configuration of particle cloud. 

generation, there appears a region where the pressure gradient along the surface is 
negative. This region moves downstream along the surface together with the vortex. 
Such a situation is clearly seen in figure 20(a),  where the bottom of valley on the 
pressure curves nearly coincides with the instantaneous centre of the vortex. 

At  t w 0.2, some part of the particles pass through the bow shock and they are 
decelerated very rapidly owing to the strong frictional force exerted on them by the 
mainflow gas. The axial width of the particle cloud begins to decrease appreciably 
with time. A t  t w 0.5, the bow shock is distorted in the most remarkable state. The 
shock distortion in this stage is quite consistent with that observed in the previous 
experiments (Dunber et al. 1975). At  the right-hand front of the particle cloud, a 



weak shock wave is produced. Since the uniform flow is supersonic, this shock wave 
moves with the same speed as that of the right-hand front of the cloud. The particle 
cloud completely flows out of the shock layer by t z 0.4. The particles in the cloud 
still have positive axial velocity components which are different in the particles in 
the left-hand and the right-hand parts of the cloud. The particle velocities in the left- 
hand part are larger than those in the right-hand part. As a result, the particle cloud 
shrinks to a very thin disk. The thinnest disk is attained at t z 0.5, after which the 
disk width begins to increase again. Some particles reach the farthest point at t x 
0.7. Since the reflected particles also have the radial velocity components, the disk 
radius is elongated to about three times its original value at t M 0.7, For t > 0.7, all 
the particles are pushed back towards the downstream direction owing to the drag 
force by the mainstream gas and then the particle cloud impinges again on the shock 
layer at  t w 1.3. 

It can be seen that the radial extent where the bow shock is appreciably distorted 
is increased in proportion to the increasing rate of the disk radius. When the particle 
cloud reimpinges on the shock layer a t  t z 1.3, the cross-sectional area of the cloud 
is about 13 times as large as its initial one and the averaged particle loading ratio 
over the cloud is about 0.4. For t > 1.0, the unsteady distortion of the bow shock is 
relatively small. 

Just when the particle cloud is completely reflected, the highly compressed gas 
near the stagnation region begins to expand towards the upstream direction owing 
to the higher pressure beyond the ambient pressure and also owing to the frictional 
force exerted on the gas by the rebounded particles. The front of the expanding gas 
meets the gas coming in through the bow shock at an intermediate point between the 
sphere and the bow shock, where the flow directions of both gases are deflected nearly 
perpendicularly to the axis. From there, they proceed towards the radial direction to 
form a contact surface and also to generate a vortical structure. This situation is well 
demonstrated in figure 17. The vortical structure thus produced near the outer edge 
of the impinged cloud is convected downstream along the sphere. The centre of the 
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FIQLTRE 17. Velocity vectors at  t % 0.2. A contact surface is formed between the outgoing and 
the incoming gases almost along the vertical line at an intermediate point in the shock layer. 
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FIGURE 18. Velocity vectors a t  t x 0.6, 0.8 and 1.0. 
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FIGURE 19. Vorticity o of the gas flow in the shock layer at t % 0.6. 
x 

vortical structure can be recognized as a circular spot in the contours of the constant 
pressure or the constant density. I n  order to confirm these situations in more detail, 
the velocity vectors of the gas are shown in figure 18 for t x 0.6, 0.8 and 1.0. Figure 
19 shows a distribution of vorticity o, 

of the gas flow in the shock layer a t  t x 0.6, where V ,  and V, are the velocity 
components of the gas in the 6- and 7-directions. As shown in this figure, the centre 
of the vortex is a t  first located near the outer edge of the particle cloud. From figures 
18 and 19, the presence of the vortical structure and its convection by the gas flow 
are well observed. 
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As seen in the contours of the constant density (figure 16), the contact surface 
(surface dividing the hot gas cloud produced by the particle impingement and the gas 
coming in through the distorted bow shock) first produced at  t w 2.0 is always linked 
with the convecting vortical structure. Even after the vortical structure flows away 
from the computational domain, the contact surface remains near the body surface, 
which reuslts in the density field taking the longest time to regain its original dust- 
free one. 

Here it must be noted that the particle cloud at  t x 0.5 does not seem to satisfy one 
of the assumptions introduced in the present analysis, that is, the diluteness of the 
particles. In the present analysis, the volume fraction ep is obtained from 

where 8, is the averaging area and Npk is the number of particles per unit length of 
the k-subcloud (Ishii et al. 1989). 

In the most severe case at  t x 0.5, the disk thickness is about 0.01 and the disk 
radius is about 0.8. This suggests that the average particle density aPmp over the 
cloud is about 30 kg/m3. This corresponds to a volume fraction ep of about 0.7 x loe2. 
This figure will, however, be sufficient for the assumption of diluteness of the 
particles. For example Matveyef & Seyukova (1981) proposed a correction of the 
particle drag coefficient for a finite volume fraction E, in the form, 

C;, = CD( 1 + 2 . 5 ~ ~  + 7 0 4 ,  (30) 

where C;, is the modified particle drag coefficient. From this, one has CD/CD = 1.02 
for E ,  = 0.007, and therefore it can be concluded that the error of C, introduced by 
neglecting the volume fraction will be at most a few per cent, even in the most severe 
situation in the present results. 

Figure 20 shows the time history of the pressure profile along the body surface. The 
profile is plotted at every 10 timesteps (At w 0.01). At first sight, it  can be seen that 
the flow distortion induced by the particles is very significant and complicated. In 
this case, the reflected particles penetrate the bow shock and enter the uniform flow 
region. The particles interact with the gas flow in such a way as to produce an 
unsteady shock wave propagating upstream in front of the bow shock (see figure 16). 
The locus of this shock nearly coincides not with the particle path but with the focal 
line (the line connecting the particles located on the upstream side of the particle 
cloud at  each time) of the particle paths. As shown in figure 21, the location of the 
bow shock on the body axis is disturbed very strongly by the impingement of the 
particle cloud. 

Next, the results for the perfectly inelastic reflection of the particles will be 
mentioned. Figure 20(b )  shows the time history of the pressure profile along the body 
surface. In this case, the unsteady flow behaviour before the first impingement of the 
particles at the left-hand side of the cloud is the same as that in the previous elastic 
reflection case. 

It is important to point out that the maximum pressure experienced by the gas at 
the stagnation point is higher in the perfectly inelastic reflection case than in the 
perfectly elastic reflection case. 

Contours of the constant pressure, density of the gas and the configuration of the 
particle cloud are shown in figure 22 a t  every 100 timesteps for 0 < n < 300. The 
difference between the results in the perfectly elastic and inelastic reflection cases are 
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FIGURE 20. Time history of pressure profile along the body surface, p ,  = 0.1 atm, r, = 290 K, 
M ,  = 3, F~ = 2.0 pm, v, = 5.0, = 3 cm : (a)  perfectly elastic reflection; (6) perfectly inelastic 
reflection. 

first seen at t x 0.2. After the reflection of the particle cloud, a vortical structure as 
well as a contact surface is induced. The growing mechanisms of the contact surface 
and the vortical structure are essentially the same as those in the previous case 
except for the absence of the frictional force exerted on the gas by the reflected 
particles. In the present case, however, the strength of the induced vortex is very 
much weaker than in the elastic reflection case. The vortex is convected by the gas 
along the surface, being linked with the terminal end of the contact surface, which 
is elongated with time and pushed closer and closer to the body surface. 

By the impingement of the particle cloud on the shock layer, the shock stand-off 
distance is first decreased. Since the particles are removed from the flow field as soon 
as they impinge on the sphere, the bow shock regains its original location and shape 
relatively faster. Also the shock distortion is much smaller than in the elastic 
reflection case. 

The vorticity produced in the flow field by the particle cloud is relatively much 
weaker than in the completely elastic reflection case. When it is shown in the same 
scale as in figure 19 at t z 0.6, any contours do not appear. This is because the 
magnitude of the vorticity w is less than 10 in the whole computational domain in the 
completely inelastic reflection case. 

By comparing the reuslts in figures 20 and 21, it can be concluded that the 
significant conical distortion of the bow shock observed in the previous experiments 
(Dunber et al. 1975) will not be produced by the impinging particles only or without 
the rebounded particles. The reflected particles play very important roles in the 
shock distortion and in the production of the vortical structure. The vortical stucture 
produced near the body axis is, however, partly different from that postulated in 
connection with the experimental observations (see figure 14). 
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FIGURE 21. Variation of shock stand-off distance with time, p, = 0.1 atm, T, = 290 K, M ,  = 3, 
Fp = 2.0 pm, v, = 5.0 ,E = 3 cm. -, shock stand-off distance; ---, location of the front edge of 
the particle cloud. 

5. Conclusion 
Supersonic two-phase flows around a sphere were simulated numerically. It was 

found that an appreciable particle concentration can appear near the limiting 
particle streamline for the Stokes number of order unity. It is quite remarkable that 
the ratio of the collection factor Ep to the modified Stokes number !@ depends little 
on the particle mass loading ratio v,. 

When a large particle cloud impinges on a dust-free shock layer around a sphere, 
the flow field is significantly distorted and a reverse flow region is temporarily 
induced near the stagnation region. This reverse flow grows into a vortex. Then the 
flow model proposed previously to explain the experiments is partly supported by 
the present simulation. The vortical structure is always linked with a contact surface. 
The distortion of the bow shock is much stronger in the elastic reflection case than 
in the inelastic reflection one. This suggests that the rebounded particles play an 
important role in the distortion of the flow field around a blunt body. They may 
cause a strong separation of the gas flow near the body axis. 
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for his valuable discussions and criticisms and also acknowledge support through a 
grant-in-aid for Scientific Research (C-01550532) of the Ministry of Education, 
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FIQURE 22. Flow field in the shock layer for perfectly elastic reflection: (a )  contours of constant 
pressure ; (b) contours of constant density ; (c)  configuration of particle cloud. 
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